上一篇京维世达给大家介绍了如何选购遥控吸尘器_遥控吸尘器选购技巧:【汇总】的相关知识,是不是获益匪浅呢。下面给大家介绍一下谁有水源热泵冷热水中中央空调控制系统设计资料(PLC、组态设计)包括硬件软件:【基础】的相关知识。下一篇京维世达给大家介绍大金空调显示e09是什么故障(大金空调故障09-01):【步骤】 的相关知识,让我们尽情期待吧。
北京京维世达科技有限公司
联系人:吴经理
电话:400-668-3693
手机:
QQ:857604149
网址:https://www.jw-sd.cn/
时间:2023-06-25 来源:CEO 点击:0 次
上一篇京维世达给大家介绍了如何选购遥控吸尘器_遥控吸尘器选购技巧:【汇总】的相关知识,是不是获益匪浅呢。下面给大家介绍一下谁有水源热泵冷热水中中央空调控制系统设计资料(PLC、组态设计)包括硬件软件:【基础】的相关知识。下一篇京维世达给大家介绍大金空调显示e09是什么故障(大金空调故障09-01):【步骤】 的相关知识,让我们尽情期待吧。
这个有用没?
:定鼎网 >> 定鼎建筑 >> 建筑专业论文 >> 建筑技术 >> 武汉香榭里花园水源热泵空调系统设武汉香榭里花园水源热泵空调系统设计
-
摘要: 详细介绍了武汉香榭里花园水源热泵空调系统的设计,并指出了抽水、回灌井设计,水源热泵机组选用的技术要点,并结合系统实际运行情况分析了其节能和环保效益。
关键词: 地下水 水源热泵 节能
武汉香榭里花园位于武汉市汉口香港路中段,是武汉市地税局开发建设的职工自用住宅小区,整个小区占地17亩,东西方向长约140m,南北方向长约100m,临街有幢70年代兴建的8层住宅楼,长度约60m。小区由三幢13层的小高层住宅围合而成,总建筑面积为40856m2, 其中1号楼1单元1~7层为办公用房,办公用房建筑面积2856 m2。小区建筑高度40M,共有住户188户。
本工程98年开始设计,2000年开始动工兴建,2002年11月竣工投入使用,现已使用一个完整的空调制冷供暖季,使用效果良好,达到了预期的设计目的。
1.设计参数
空调室外设计参数按《采暖通风与空气调节设计规范》(GBJ19-87,2001版)武汉地区气象参数选取,室内设计计算参数按表1选取。根据室内外设计参数,计算出的室内空调冷负荷如下:1号楼(综合楼)空调冷负荷11646Kw,热负荷9317Kw;2号住宅楼空调冷负荷10584Kw,热负荷8468Kw;3号住宅楼空调冷负荷1464Kw,热负荷11712Kw。空调总冷负荷3687Kw,热负荷2950Kw。
表1 空调室内设计计算参数 序号
名 称
夏 季
冬 季
温度(℃)
相对湿度(%)
温度(℃)
相对湿度(%)
1
办公
26
60%
20℃
40%
2
客厅
27
65%
20℃
40%
3
餐厅
27
65%
20℃
40%
4
卧室
26
65%
20℃
40%
2.空调冷热源
该场地位于长江一级堆积阶地中部,地势平坦,地面标高205m,根据场地岩土工程勘察报告和武汉地质工程勘察院2001年4月编制的“试验井水文地质报告”可知,场地内赋存丰富的地下承压水,开发利用条件极好,具备使用水源热泵的条件。
21 场地水文地质条件和主要含水层水文地质参数
场地地层为第四系全新系统冲积层,为一元结构,自上而下分布为:杂填土,深度0~1 6m;淤泥质粘土,深度16~140m;淤泥质粉砂,深度140~170m;粉细砂,深度170~350m;属弱透水层,厚度18m;细砂,深度350~400m, 主要含水层,层厚5m;含砾中粗砂,深度400~430m,砾径一般为05~10cm,主要含水层,层厚3m;砂砾石,深度430~460m,以砾石为主,砾径一般为10~50cm,最大达12cm,磨园度好,主要含水层,层厚3m;含砾粘土岩,深度460~470m,砾石大小混杂,以石英岩、石英砂岩为主,次为火遂石、硅质岩,为隔水层。因此,场地含水层总厚度为29m,其中主要含水层厚度为11m,分布在中下部。
2001年4月测得地下静止水位标高为178m(从井口标高210m算起埋深32m),含水层顶板标高35m,因此,地下水的类型为承压水,承压水头高度为143m。抽水试验系单井抽水试验,当用QJ-5/24型深井潜水泵抽出水量1200m3/d时,5分钟后地下水位基本稳定于标高147m处,水位下降值31m,水位稳定时间24小时。经过计算,水文地质参数为:渗透系数K值为1455m/d,影响半径尺值为11833m。
地下水为无色、无味、无肉眼可见物,实测水温为185℃,经水质分析,地下水水化学类型属重碳酸钙型水,PH值为72,总矿化度98075mg/l,总硬度53512mg/l,属中等矿化极硬水。总铁(Fe)含量为16mg/l,其中Fe2+含量为158mg/l,Mn含量为044mg/l,CL-含量为8472mg/l。不经过专门处理,不适宜饮用和生活洗涤用。
22 抽水井和回灌井设计
抽水井、回灌井的布置及设计必须根据场地环境条件进行,在保证水源热泵空调系统地下水长期稳定使用的前提下,又不致造成地下水利用期间地质灾害的出现。经过计算机和水源冷热水空调机组的选型,地下水开采量必须达到满足高峰空调负荷的3000m3/d。根据此用水量和试验井抽水试验数据,抽水井设计为三口,每口井水量1000m3/d, 三口井三角形布设,间距80~120m,回灌井五口,每口井回灌水量600 m3/d,总回灌水量3000 m3/d,五口井呈梅花形布置,井间距最小大于40m。当三口抽水井与五口回灌井同时工作时,即抽取的地下水经水源热泵机组利用后全部回灌入五口回灌井时,经电子计算机专用程序计算后,并绘制出抽水井和回灌井同时工作状态下水位等值线图显示,场地东侧基本没有变化(变化小于05m),场地南侧地下水水位有不到10m的沉降,大部分场地的地面沉降均小于05cm,只有场地南侧地面沉降有10cm。大部分场地(包括原有8层住宅楼)不均匀沉降小于02‰,不会产生不良地质现象或影响建筑物的正常使用。地下水的开采与回灌设计由武汉地质工程勘察院进行,并由湖北省深基坑工程咨询审查专家委员会进行了咨询审查,设计方案得到了确认和通过。
抽水井的井结构为:井孔深度470m,孔径500mm,井管直径273mm,井管为壁厚80mm的无缝钢管,管与管采用对口焊接,井管下置深度470m,自上而下0~230m为实管,230~460m为过滤管,460~470m为沉淀管。井管与井孔均必须圆直,井管下入井孔时,井管必须有找中器,管底必须用钢板焊死,井孔与井管间从下而上回填标准砾砂(粒径2~3mm)至深度180m处,再用干粘土球填至地面。采用包网填砾过滤器,过滤管在深度230m处与实管连接,过滤管表面由梅花形孔眼排列而成,过滤管表面必须均匀地焊纵向垫筋17根,垫筋外面用3层60目尼龙网扎牢(取水时要求地下水含砂量小于二十万分之一)抽水井施工完毕后必须洗井直至水清砂净,方可用水泵进行抽水,每口井均必须经过抽水试验和试运行,方可正式投入使用。
回灌井的井结构为:井孔深度470m,孔径500mm,井管直径273mm,井管为壁厚80mm的无缝钢管,管与管间采用对口焊接,井管下置深度470m。井管从孔口算起0~340m为实管,340~60m为回灌过滤管,460~470为沉淀管,沉淀管底部用钢板焊死。井管与井孔间从下而上,回填标准砾砂(粒径2~5mm)到深度210m处,两用干粘土球填至深度100m处,最后用水下浇注法将水灰比为045的纯水泥浆浇注至孔口。采用缠丝包网填砾过滤管,过滤管在深度340m处与实管连接。过滤管的孔眼排列,孔径数量和孔隙率与抽水井的过滤管相同。过滤管表面焊接纵向垫筋的直径、材料、数量也与抽水井的过滤管相同,回灌井施工完毕后必须立即洗井,直至水清砂净,接着进行回灌水试验和试运行,并提出相应资料,方可投入使用。
为保证随时掌握地下水的使用和变化情况,还应该设置专门的水位观测井或利用抽水井与回灌井进行水位观测。抽水井与回灌井的科学设计和合理分布直接影响到水源热泵空调系统的长期稳定运行,必须找有资质的专业水文地质部门进行设计,凿井施工也必须严格按《供水管井设计施工及验收规范》(GJJ10-86)执行,以确保成井的质量。
23 水源冷热水机组选用
地下水在夏季和冬季的实际需要量,与空调系统选择的水源冷热水机组性能、地下水温度、建筑物内循环温度和冷热负荷以及热交换器的型式、水泵能耗等有密切关系。电脑软件选型分析及实际工程使用结果表明地下水使用温差较大时,水源冷热水机组的能效比较高,地下水的使用量较小,其配套井水泵的功率也较小。因此,在实际选用水源热泵系统时,应尽可能加大地下水的使用温差,减少地下水用量,这对提高水源热泵系统的能效比和减少地下水量的开采,保护水资源都是极为重要的,如此合理高效地利用地下水资源才能产生最好的节能环保效益。经过多方技术论证,设计中最后选用意大利克莱门特公司生产的BE/SRHH/D2702型水—水螺杆冷热水机组3台,因地下水氯离子含量偏高(8472mg/l),为防止水源冷热水机组被腐蚀和泥沙堵塞,地下水抽取后先进入板式换热器,设计中选用的板式换热器为阿法拉伐公司的M15-EFG8型板式换热器。板式换热器采用小温差(对数温差2K)设计,制冷时地下水进/出口温度为18/32℃,进入机组温度为20/34℃;制热时,地下水进/出口温度为18/10℃,进入机组温度为16/8℃,每台机组地下水冬夏季的使用量均为80m3/h。采用板式热交换器间接换热,水源冷热水机组的能效比约降低5%左右,但能保护机组稳定正常运行,提高机组的使用寿命。
3.空调系统形式
水源热泵空调系统水环路的设计与常规冷水机组水系统的设计略有差异,必须根据各生产厂家的技术要求进行考虑。用户侧及地下水侧空调循环水泵与水源冷热水机组均采用先并后串的方式,循环水泵既可与冷热水机组实现“一对一”供水,又可互相调节互为备用。对于水源冷热水机组来说其实现夏冬季节制冷供暖的转换,是通过水路系统阀门的转换来进行的,夏季用户侧通过蒸发器回路供应冷冻水,冬季用户侧则通过冷凝器回路供应供暖热水。因此夏冬季节水环路转换阀最好采用调节灵活、性能可靠的电动阀,采用普通蝶阀时也一定要采用关断灵活、密闭性好的阀门。地下水井抽水泵可采用深井潜水泵,潜水泵下放深度应在动水位之下5m处,安装要平稳,泵体要居中。一般依据井管内径、流量和扬程要求,根据生产厂家提供的样本选配合适的水泵,再根据所需电功率选择电机及配套电缆。潜水泵的扬程应包括井内动水位至机房地面高度,管道及板式换热器阻力,水泵管道阻力及回灌余压。地下水回灌管道设计应根据各回灌井的距离进行阻力平衡计算,以保证各灌井流量的均衡。
空调室外水环路和室内立管均采用机械密闭同程式系统,每个户型由上至下均设有空调供回水管井,下供上回,户内空调水管路为异程式。每户供水管上设有分户计量装置,回水管上设有流量平衡阀。户内空调末端设备均为卧式暗装风机盘管,根据装修布置情况顶送顶回或侧送底回。风机盘管及户内连接水管的布置均根据户型设置情况尽量利用走道、进门过道,卫生间、厨房等对房间使用功能影响较小的位置,做到隐蔽、美观并与室内装修融为一体。空调室内供回水管保温采用难燃橡塑管套,室外空调供回水水管采用聚氨脂现场发泡保温直埋管,并作五层防水防腐保护层和玻璃钢护壳,穿越马路的直埋管增设钢套管,并保证埋设深度在1m以上。
4.空调自控及减振
克莱门特水源冷热水机组采用CVM300电脑微处理器,功能齐全,可自动调温,调节流量、故障报警、记录及自诊断功能,可进行联网监控,实现无人值守。多机控制系统除具备单机自动化配置及功能外,还具备显示多机组运行情况,根据回水温度电脑自动判断空调系统是部分机组运行还是全部机组运行。机组根据负荷侧回水温度进行逻辑计算,控制机组的运行状态及启停机,每台机组采用无级能量调节实现机组的高效节能运行。机组还具备控制多台压缩机的均衡运行功能,能控制调整每台压缩机的运行时间,确保压缩机的长期高效运行。
水源冷热水机组压缩机的下面设置弹簧减振器,减振效率在85%以上,即振动传递率小于015,降低了机组的振动及系统的振动,从而降低了机组的运行噪声。空调水泵、机组进出口均采用橡胶接头软性连接,冷水机房内的空调水管均采用减振支吊架,避免因机组、水泵及管径系统的振动而产生的噪声。
5.设计总结
香榭里花园水源热泵空调系统于2002年11月竣工投入使用,经过系统调试和一个完整的空调制冷供暖季运行检验,空调使用效果良好,达到了预期的设计目的。对今年6、7月份中央空调用电的运行记录进行分析,可以看到6月份日均用电量为4970Kw,按小区建筑面积40856m2计算,每平方米建筑面积空调耗电0122Kw/d,电费支出0064元/d;7月份因连续高温日均用电量略有上升,达到6342Kw,每平方米建筑面积空调耗电0155Kw/d,电费支出0082元/d。以户均面积200m2计,一户日均空调电费支出为128元,月支出为384元,相当于一台2匹空调的费用支出,可以看出其运行费用是很低的,既低于常规冷水机组中央空调系统,更低于户式中央空调系统。进一步的分析可以看到,水源热泵中央空调系统运行费用之所以如此低廉,除水源热泵空调系统较常规冷水机组中央空调系统能源利用效率高,中央空调系统在大面积居住小区中使用较户式中央空调具有更大的负荷调节性和节能性,居住小区面积越大其用户空调的同时使用率就越低,其负荷的参差性就越大,中央空调系统满负荷运行的时间就越短,其优越性和节能性就越显著。按以上6、7月份的运行数据折算,6月份的中央空调系统每天满负荷运行时间为524小时,7月份的每天满负荷运行时间也仅为668小时,远低于户式中央空调系统和分体式空调器的满负荷运行时间。
香榭里花园中央空调系统设计时,风机盘管采用了电动二通阀的变流量系统,热泵机组主机供回水总管上设压差旁通控制。因住宅小区空调同时使用率较低,其节能效果应是非常显著的,遗憾的是其主在后期因为控制整个投资成本,而砍掉了电动二通阀的节能控制系统,否则此中央空调系统节能效果应更优于现在的实际运行情况。另外,从实际运行情况来看,空调水泵的能耗占到系统总能耗的32%以上,因为住宅的同时使用率较低,空调负荷的变动性较大,通过空调水泵的联控和变频改造以适应空调负荷的变化,降低空调水泵的运行费用,其节能效果也将是较为可观的。
由此可见,在住宅小区中采用水源热泵中央空调系统在有可长期利用的地下水源的条件下是确实值得大力推广的,其节能环保效益是显而易见的,在解决了投融资及物业管理的问题后,其给住户带来的舒适的中央空调系统和合理的运行费用及给开发商带来的良好经济效益和超卓的楼盘形象,都将会是不言而喻的。
参考文献
1.陈焰华等,武汉地区水源热泵系统应用前景分析,暖通空调新技术,第4辑,2002
2.陈焰华等,住宅建筑的中央空调系统设计,建筑热能通风空调,2002,2
3.武汉地质工程勘察院,武汉市地税局汉口香榭里花园小区地温(水源)中央空调地下水开采与回灌设计,2001
4.徐伟等译,地源热泵工程技术指南,北京:中国建筑工业出版社,2001
北京警察学院集中空调水源热泵系统设计http://wwwyuanlin365com/construct/30472/
冷水机房隔音厂家G673次高铁列车从北京西站到宝鸡南站总共有12站,13:46发车,20:48到达,全程耗时约7小时02分钟。
G673次高铁列车时刻表经过的站点有北京西站、涿州东站、石家庄站、邯郸东站、鹤壁东站、新乡东站、郑州东站、洛阳龙门站、华山北站、北站、岐山站、宝鸡南站,如果您需要购买G673次高铁列车该车次车票,您可以访问12306或到指定票务窗口直接订票。
建筑规模
宝鸡南站造型结合周秦高台式建筑和古典屋顶、廊柱,利用广场与站台之间8米高差,营造了依附大地、拔地而起的雄伟气势,檐下中国古典特色的仿木构件抽象展示了“凤羽”形象,青铜古典文饰在建筑立面由中间向两侧延伸展开,表现了宝鸡悠久灿烂的青铜文化。
截至2012年2月,宝鸡南站与宝鸡市行政中心南北对应,由站房、站场、雨棚三大部分组成;其中,站房地下层局部与市政车场相平,设冷水机房、消防泵房等设施,站房一层与广场及进出站地道相衔接,设候车大厅、售票厅、贵宾室、出站厅及服务用房,站房二层与站台持平,设候车大厅及办公、信号、信息、通信等设备用房。
水冷空调机组怎么分供冷和供热?1青岛宏盛达隔音材料有限公司p>1、试简述BAS的监控范围?
水冷空调机组供冷,自身制冷即可供冷,供热需要锅炉烧热水供热。
说明下,这里所说的水冷空调专指水冷主机,要和冷却塔配套,安装在专门的冷水机房里,制备的冷水(冷媒)靠冷水泵输送到末端。
还有一种水冷空调,制冷剂直接输送到末端,外机也靠水进行冷却 这种习惯上称为水空调,或者水冷却多联系统。
1、概述
广州地铁一号线共有14个地下车站、2个地面车站和一座地铁控制中心(OCC)大楼,全长186公里,采用了集散控制系统(DCS)对地铁全线环控设备及其它车站机电设备进行集中监控,由于引进了楼宇控制概念,地铁车站设备监控系统亦被称为BAS(Building Automation System)系统。广州地铁一号线采用美国CSI公司的I/NET2000系统对全线环控系统进行监控,并对全线车站的扶梯、给排水设备、应急电源进行监视报警。
2 、BAS系统在地铁环控中的作用及功能
21 地铁BAS系统在地铁环控中的主要作用:
控制全线车站及区间的环控及其它机电设备安全、高效、协调的运行,保证地铁车站及区间环境的良好舒适,产生最佳的节能效果,并在突发事件(如火灾)时指挥环控设备转向特定模式,为地铁乘车环境提供安全保证。
22 广州地铁一号线BAS系统主要功能:
(1) 监控并协调全线各车站及OCC大楼通风空调设备、冷水系统设备的运行。
(2)监控并协调全线区间隧道通风系统设备的运行。
(3)对车站机电设备故障进行报警,统计设备累积运行时间。
(4)对全线环境参数(温、湿度)及水系统运行参数进行检测、分析及报警。
(5)接收地铁防灾系统(FAS系统)火灾接收报警信息并触发BAS系统的灾害运行模式,控制环控设备按灾害模式运行。
(6)通过与信号ATS接口接收区间堵车信息,控制相关环控设备执行相应命令。
(7)紧急状况下,可通过车站模拟屏控制环控设备执行相关命令。
(8)监视全线各站及隧道区间给排水、自动扶梯等机电设备的运行状态。
(9)管理资料并定期打印报表。
(10)与主时钟接口,保证BAS系统时钟同步。
3 、BAS系统对环控设备的监控原理及内容
31 环控系统组成:
大系统——车站公共区(站厅/站台)通风空调系统;
小系统——车站设备用房通风空调系统;
水系统——地下站冷水机组系统;
隧道通风系统——执行隧道区间正常及紧急情况下通风排烟工况的环控子系统。
32 BAS系统监控点数的配置:
以陈家祠站为例,纳入BAS监控的环控设备总数约100台(包括风机、风阀和水系统设备等),环控监控总点数约430点(包括温湿度等参数检测约60点),车站监控点数分布情况如下:
(1) 隧道通风系统 :BAS系统对4台隧道风机及联动风阀、两台推力风机和组合风阀进行监视控制,监视风机过载故障报警信号,检测两端隧道入口温湿度,共计点数DO 20点、DI 28点,AI 8点
(2) 车站大通风空调系统:BAS系统对空调机、新风机、回排风机及联动风阀和调节风阀等设备进行监视控制,监视风机过载故障报警信号,检测新/排/混/送风及站厅/台温湿度,控制组合风柜出水二通阀开度来调节空调器送风温度,共计DO 44点、DI 72点,AI 30点、AO 4点
(3) 车站小通风空调系统:BAS系统对空调机、送/排风机及联动阀、调节阀监视控制,检测设备/管理用房温湿度,控制小空调器出水二通阀开度来调节相关设备房的温度,共计DO 41点、DI 41点,AI 17点、AO 3点
(4) 车站水系统:通常情况,每个地下车站配有两台离心机组和一台活塞机组(匀由美国开利公司提供),对离心机组BAS系统仅发出起停命令,其相应水泵、冷却塔、蝶阀的联动控制由机组SM模块完成,BAS系统仅负责监视状态及故障。活塞机组由于不具备该模块,其总控及水泵、冷却塔、蝶阀的联动控制由BAS完成。检测必要的水系统参数,如冷冻/冷却水水温,冷冻水回水流量,供/回水压差等参数作为水系统控制计算依据。共计DO 14点、DI 49点,AI 8点、AO 1点,同时BAS系统设有开利冷水机组DATAPORT的高级数据接口,接收三台冷水机组的运行数据。
(5) 其它:扶梯、给排水、紧急照明共计DI 54点、DO 2点,AI 1点。
33 对环控设备监控内容配置的几点注意事项
在监控点的编制上,合理、全面的监控点数的编制可以使系统监控功能更加完善,软件编程更加简单、合理、可靠。根据广州地铁一号线的经验,应注意以下几点:
(1) 在广州地铁一号线,每台环控设备带有BAS系统中“就地/远方”,“环控/车控”两个转换开关,分别位于设备现场和环控电控室。由于设计上的点数限制(每站10个手/自动信号),BAS系统仅对隧道风机,大系统空调机、送排风机等重要设备的“就地/远方” 转换开关进行监视,并将部分设备的“就地/远方” 转换开关信号进行合并,如空调机手/自动信号为车站一端两台空调机的“就地/远方”并联信号。因为BAS系统无法获知设备的具体控制权限,控制带有一定的盲目性,因此很有必要在BAS系统中对所有环控设备“就地/远方”和 “环控/车控”转换开关的位置进行监视,确保控制的合理性和可靠性;
(2) 在对电动风阀(包括蝶阀)的控制中,一号线为节省监控点数,采用了一个输出点的中间继电器常开、常闭接点来控制风阀(水阀)的正转和反转;并仅用一个DI点检测风阀全开信号。这种单DO,单DI 的监控方式使BAS不能依据设备的动作情况撤消输出命令。输出信号的长期存在,给设备的正常运行造成了故障隐患,增加了软件编程的难度:如当系统模式工况转换过程中时,风阀进行开关转换,相应风机由于无法获知风阀是否处于转换过程中而被迫关停无须动作的风机。因此,对于该类设备的监控仍应采用2个DO点分别控制开和关以及使用2个DI点检测风阀开到位和关到位信号,以表示全开、全关、中间状态。
(3) 冷水机组若本身带有自动控制功能,如离心机组,可考虑BAS仅负责总的起停命令,相关水泵等设备BAS系统仅负责监视。并设置数据接口接收对冷水机组运行数据,对机组运行集中科学管理。同时尽量减少检测参数的重复设置(如地铁一号线,BAS同活塞机组同时设置水流开关)以简化控制,节省投资。
(4) BAS系统在车站级设有同FAS系统的数据接口,FAS系统将经确认后的火灾分区信号通过数据接口送BAS系统接收,BAS系统在接收到FAS系统火灾报警信号后启动相应的火灾模式。对于地铁而言,由于车站级火警信息量不是很大(广州地铁一号线每站约30个火警信息),除通过数据接口外还可考虑通过硬线(I/O)连接的方式完成,使用硬线I/O方式连接替代通信接口的使用,可增加系统的可靠性,降低接口开发的费用。但硬线I/O连接同时增加了输入输出模块,因此具体的连接方式可根据实际情况进行选择。
(5) 关于防火阀的监控,因属消防设备,广州地铁一号线将其纳入FAS系统进行监控,但作为环控系统的组成部分,出于控制系统完整性的考虑,亦应纳入BAS系统监控范围,根据实际情况,可考虑以下几种方式。
①完全纳入BAS系统,由BAS系统进行防火阀监控。
②通过BAS/FAS数据接口或硬线接口,通过FAS系统进行防火阀的监控
③BAS、FAS均对防火阀进行监控——需设置控制转换开关。(香港地铁便采用该种方法)
4、 地铁车站设备监控系统(BAS)的系统构成及网络配置
41 I/NET2000系统的主要特点:
(1) 采用分层局域网(LAN)技术,可实现几点到十万以上点的控制网络,车站间采用以太网(TCP/IP协议)通信,车站级主网(CONTROLLER LAN)采用令牌总线网络通信,子网(SUB LAN)采用轮询(MASTER/SLAVER)方式通信。
(2) 灵活的输入/输出配置,PCU、UC输入点可在软件中配置为AI、DI、PI等,对于模拟量输入可通过跳线的设置,接收0~20mA、0~5v、0~10v 、RTD温感等多种信号。
(3) 编程组态采用点的概念,直接在控制点上完成逻辑、数学及其它控制算法,组态方式简单灵活。
(4) 作为典型的楼控产品,提供多种节能控制程序模块,如自适应最佳起停控制,自整定PID算法、死区控制算法等。
42 BAS系统网络结构
广州地铁车站设备监控系统分中央级、车站级、就地级三级对环控设备及其它机电设备进行监控,系统网络图如下:
PCU:过程控制单元,8输入8输出,可扩展至32输入或16入16出
UCI:单元控制器接口,可下带最多32个单元控制器UC,采用主从通讯方式进行通信,监控点数可多达512点
MPI:模拟屏驱动接口
HLI:高级数据接口
图1 BAS系统网络结构图
通常在车控室放置3块UCI,其中两块UCI分别负责监控车站两端的环控设备并实现环控电控房模拟屏控制功能,另外一块UCI负责站厅/台和部分设备用房温湿度检测并接收FAS火警信号以及对车控室模拟屏以及其他系统(扶梯,给排水等)设备的监控。
冷水机房设置一块PCU负责对冷水机组进行监控;每端空调机房设置一块PCU检测风室及设备/管理用房的温湿度,并负责控制空调机出水二通阀的开度。每端环控电控室设置2~4块PCU辅助UCI对本端环控系统进行监控。 BAS系统在车站设置有与FAS及冷水机组的数据接口HLI,用来接收第三方设备的数据。
43 中央级局域网的配置
中央级设置工作站及备份站各一套,工作站同备份站实现以太网级别的热备。OCC局域网有与信号ATS及通信主时钟的数据接口及模拟屏一块,网络配置如下:
图2 BAS系统中央级网络配置图
由图2可见,OCC中央级除负责接收通信系统时间同步信号外,在OCC局域网中还连接有与ATS数据接口HLI以及模拟屏设备,并通过中央工作站(PC机)将数据传输到BAS以太网上,同其它车站级BAS系统进行数据交换。需要指出的是:正常情况下,所有隧道通风模式由连接在中央级局域网上的BAS控制器根据ATS列车阻塞信号或人工指令,进行计算确定,并通过以太网下发环控模式指令号到相关车站,再由相关车站BAS控制器指挥相关设备正确动作。当该工作站死机或故障时,则模式无法正确下达,只能由相关车站通过就地模拟屏超弛控制,影响了事故情况下的反映速度。由于隧道通风涉及乘客人身安全,对隧道通风模式正确及时执行有很高的要求,因此BAS系统中央级局域网应通过专门网关(交换机)或服务器连接以太网。
44 车站模拟屏的设置:
作为紧急情况下、或BAS工作站故障情况下的紧急后备操作手段,广州地铁一号线分别在每站的车控室和两端环控电控室设置了地图式模拟屏。模拟屏的操作主要以执行区间事故及车站火灾模式为主,模拟屏的设置应遵循以下原则:
(1) 模拟屏应突出隧道区间及车站事故运行模式下的执行,模式执行完毕或执行失败应有相应的反馈指示。
(2) 带有钥匙转换开关。可以对工作站、车控室模拟屏、环控电控室模拟屏操作权限进行转换,保证控制命令由唯一的地点发出。
(3) 模拟屏是以按键来触发相应模式的执行。作为紧急操作手段,模拟屏应具有超弛其他控制指令的能力,例如,当操作站软件设定设备控制方式为单控(点对点控制)而非程序(模式)控制时用模拟屏执行的模式指令应能超弛该单控命令,为此模拟屏控制模式软件算法应独立于操作站模式软件算法。在系统软件中要考虑该部分软件资源的配置。
(4) 最好配置独立于主控制器的的模拟屏控制器,同主控制器共享I/O,增强紧急控制的可靠性。
5、 环控工艺模式的实现
根据季节、负荷、突发事故(火灾、列车阻塞)等情况,环控专业制定了大量的环控模式,控制环控设备在不同的条件下运行不同的工况模式。包括大系统、小系统、水系统和隧道通风等环控工艺模式,以陈家祠为例约有环控工艺模式近百个。
51 硬件配置
系统主要采用两种控制器完成环控系统的控制工艺流程,即PCU和UCI,以下是其主要性能:
(1) 过程控制单元PCU:多达640个点地址可自由组态,包括软件内部点(Internal points)和间接点(Indirect points),提供最多可扩展至96K的用户程序存储器,提供布尔逻辑、时间表、节能算法等扩展功能供软件编程组态,并且提供多种DDC控制算法模块如:事件(Event sequence )、PID、浮点控制(Floating)等;
(2) 单元控制器接口UCI:总共640个地址空间可自由组态,提供24K用户程序存储器,具有布尔逻辑、时间表、节能算法等扩展功能供软件编程组态。
由于地铁环控工艺复杂,模式工况众多,在系统配置上要充分考虑控制器CPU资源和内存资源的配置,留有充分的裕量。在广州地铁一号线BAS系统中,由于大部分环控设备主要由本端的UCI进行控制管理,造成UCI超负载工作,(部分UCI内存占用率高达80%以上,CPU负载最高达95%以上),降低了设备运行的可靠性,同时一些优化控制算法也受制于资源分布而难以实现。此外这种把几乎全部监控功能集中于UCI的做法也不符合DCS系统风险分散的原则:当一个UCI发生故障将会导致BAS系统对车站一端环控设备的控制瘫痪,最好应考虑大、小系统及隧道通风系统各自使用独立DDC控制器(即UCI)进行控制。
52 设备基本保护与自动模式的实现
以车站大系统为例,环控系统设备如下图
图3 陈家祠站A端大系统原理图
通常,环控设备低压二次回路设计只考虑单体设备的保护联锁要求,即风机同其联动风阀的联锁,因此需要BAS系统从系统出发考虑设备的保护和优化运行,广州地铁一号线主要考虑的方面有以下几点。
(1) 确保环控模式风路的畅通
(2) 当设备故障时可及时启动备用设备
(3) 环控主/备用设备应平衡运行
(4) 避免设备的频繁动作
(5) 优化开关机顺序
以陈家祠站A端大系统空调器(图3)为例,程序逻辑关系如下:
if S3-1 or S3-2 is not run &(Runtime (S3-1) — Runtime (S3-2)>0)
then output (Runtime change)=1
if S3-1 or S3-2 is not run &(Runtime (S3-1) — Runtime (S3-2)<0)
then output (Runtime change)=0
if S3-1 or S3-2 is run
then Runtime change not change
以上求得Runtime change逻辑值
if mode(LD<50%) & (~Runtime change) | mode(LD>50%)
then output ( S3-1 mode=1)
if mode(LD<50%) & Runtime change | mode(LD>50%)
then output (S3-2 mode=1)
设备平衡运行 if S3-1 mode | (S3-2 mode & any S3-2 associated equipment in fault) & not any S3-1 associated equipment in fault 故障转换
then output ( S3-1 Call=1) if S3-2 mode| (S3-1 mode & any S3-1 associated equipment in fault) & not any S3-2 associated equipment in fault 故障转换
then output ( S3-2 Call=1)
if S3-1 Call & all associated damper is open 检测风路
then start S3-1 开启S3-1
if S3-2 Call & all associated damper is open 检测风路
then start S3-2 开启S3-1
说明:& ——逻辑与;| ——逻辑或;~ ——逻辑非
mode(LD<50%) 表示所有负荷小于50%的工艺模式,即开单台空调机的模式
通过以上例子,可以看出广州地铁在实现环控设备程序控制主要从以下几方面考虑设备基本运行要求:
(1) 将模式的主备用转换变为单体设备的转换,合并备用模式。减少了模式转换的频率,提高了模式执行的效率。
(2) 在设备未运行时,通过主备用设备运行时间的比较,决定下次模式执行时开启哪一台设备(包括联动风阀),设备开启后,该值保持不变,避免运行中的设备转换。
(3) 对设备的故障情况进行实时检测,若有自身设备故障或相关设备故障,则启动另一台备用设备。故障信号为设备过载故障与命令/反馈不一致和超时故障的逻辑或。
(4) 对该模式风路上相关风阀及设备进行检测,待相关风阀全部到位,风路畅通后,才输出命令启动现场设备。
(5) 在模式启动过程中应尽可能先开空调机,后开送风机,关机则顺序相反,以避免启动中风机有可能出现的过流,保护设备的合理运行;出于保护设备考虑,风机关闭后应尽能按需要延时一段时间再关闭联动风阀。
(6) 若该工艺模式本身无备用模式,当模式中由于某台设备无法动作,模式正常执行时,可考虑转入指定模式或关停该模式,以避免设备长期不平衡运行对设备造成的损害。
6、 环控工艺模式的判定与执行
由于广州地铁环控系统设计为定风量系统,因此BAS系统控制的重点不在于调节而在于环控工艺模式工况的选择判断上。下面以车站大系统和水系统的正常运行模式为例,对地铁环控工艺的自动执行做进一步的说明:
61 车站大系统工艺模式自动判断的实现
大系统正常工艺模式的自动判定执行主要依据如下条件:①依据室外温度判定大系统执行空调或非空调季节模式②依据车站内外空气焓值的比较判定全新风或小新风模式 ③依据车站负荷情况判定执行负荷大于50%模式或小于50%模式 4)依据时间判定夜间或白天模式。图4为正常运行自动模式判断执行流程。
(1) 正常运营时间划分为三段:夜间、预通风时间、正常运营时间三段,全线BAS控制器通过主时钟获得时间同步,确保全线时间表统一。
(2) 空调季节采用外界焓值与送风设定焓值的比较判定。当外界焓值大于设定焓值时,即进入空调季节,为避免空调季节频繁切换导致模式的频繁转换,判断条件采用死区控制,并限时转换(如至少20分钟方能转换一次)。全新风及小新风工况选择使用外界焓值同站厅/台平均焓值相比较来确定,同样采用限时转换,并且全/小新风工况选择和空调/非空调季节选择使用统一的限时计时器,以确保同步转换,减少设备动作频度。
(3) 车站负荷判定采用水系统分水器温度(冷冻水出水温度)判定,采用死区75℃~85 ℃控制,非空调季节则默认执行车站负荷>50%模式工况。
(4) 环控工艺模式可通过人工选定及自动判定执行来实现。通常环控工艺模式由BAS系统根据计算结果自动判定执行,同时设置手动模式,以便特殊情况下,人工强制选定模式,在灾害状况(如火灾),则优先执行火灾模式(须人工确认后方可执行,以防止误动作)。
图4 大空调通风系统自动模式判断流程图
62 车站水系统工艺模式的实现
BAS系统负责对车站三台冷水机组进行群控。当由BAS系统自动控制冷水系统时,根据以下原则选定水系统正常运行工艺模式:①依据时间表判定白天或夜间模式运行 ②依据室外焓值判定水系统是否进入空调季节运行 ③依据车站冷负荷判定开机数量。下图为车站水系统工况判定流程图:
图5 水系统工艺模式流程图
(1) 空调季节的判定与车站大系统相同的判定条件。
(2) 正常运营时间划分为三段:夜间、车站预冷时间、正常运营时间三段。夜间只根据重要设备房温度开启活塞机组,运营前车站预冷时间内首先开启两台离心机组30分钟后再进行车站冷负荷的判断。
(3) 根据环控要求,车站负荷判定采用水系统分水器温度(冷冻水出水温度)判定,当分水器温度高过某定值开启两台离心机组,低过该值时则仅开一台离心机组,该值采用死区控制,广州地铁一号线初定为7℃~9 ℃。
(4) 为保护设备,避免冷水机组频繁动作,设定冷水系统模式最少运行时间(如至少90分钟方能转换一次)。
63 风系统与水系统的协调运作
BAS通过调节每台空调机冷冻水出水二通调节阀开度调节空调机送风温度,同时该二通阀兼做水系统工况转换水阀,根据空调机开启情况和水系统运行模式来输出相应控制开度或者关闭二通阀,保障风系统和水系统的协调动作。大系统车站负荷和水系统负荷情况均由冷冻水出水温度值来判定,广州地铁初定大系统负荷判定为75℃~85 ℃设置死区控制,水系统为7℃~9 ℃设置死区控制,为避免当风系统运行在小于50%工况时,水系统运行在大于100%工况(7℃~75℃)时,水系统冷负荷过低造成冷水机组跳机,大系统负荷判定加入冷水系统模式执行条件,如图6:
曲线1 :开启单台离心机组时大系统负荷判定曲线
曲线2 :开启两台离心机组大系统负荷判定曲线
图6 大系统负荷判定曲线图
为保证风、水系统的协调运行,水系统与大系统采用统一的空调季节判定条件。同时由于大系统、水系统的工况转换限时计时器不同(大系统为20分钟,水系统为90分钟),存在冲突的可能性,因此,风系统工况转换时要考虑到水系统的运行工况。
7、 结束语
由于地铁环控系统的复杂性和特殊性,对车站设备监控系统的控制要求往往同一般楼宇自动化系统区别很大,在硬件的配置和软件功能上有其特殊的要求,因此,在今后的地铁建设中,要根据地铁的实际情况,合理配置系统,完善系统功能,最大限度的提高地铁环境控制系统的自动化水平。
本文地址:https://www.jw-sd.cn/view-9116-1.html
免责声明: 京维世达中央空调维修网部分文章信息来源于网络以及网友投稿,本网站只负责对文章进行整理、排版、编辑、是出于传 递更多信息之目的。如权利人发现存在误传其作品情开明,请及时与本站联系。本站核实确认后会尽快予以处理 。